
When scanning an image, or working with images
that have already been scanned, one should
understand the mathematics of halftone
reproduction. It’s easy math; it requires only
multiplication or division to get the needed
information.

As with any complex
subject, understanding the
concept is the most
important factor in finding
success. With resolution
issues the concept is to scan
an image with an adequate
amount of information so
that an excellent halftone
image results. Too much –
or too little – information in the scan can either
ruin the image or cause a deadline to be missed
and run-up unnecessary expense in production.

Digital images are elastic
A digital photograph, made up of pixels in rows,
can be reproduced large or small  – these images
are elastic – to a point.

One often reads or hears preposterous
information about digital images, information that
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is based on misunderstanding of the basic concepts
of image elasticity and the relationship of images to
their final halftone patterns.

Armed with the information in this handout,
you will be able to work with images and turn

them into excellent printed halftones. The resulting
images will be effective for the desired purpose as
long as you work within the practical limitations of
image elasticity, and as long as you are careful to
scan correctly and to work from good originals
whenever possible.

The concept of oversampling
Oversampling is the process of scanning more than
one pixel for each halftone dot in the final
reproduction. The idea is sound: to prevent the
duplication of a pixel value in halftone patterns
(sometimes called pixelization), one must provide
the halftone generating device with enough
information as to provide a unique tonal value for
each and every potential halftone dot in the final
image.

Certainly there are areas in a photograph
where the pixels are of the same reflective value in
the file, and the halftone dots in the the final
reproduction will be the same. This is fine, as long
as these similarly-toned pixels represent the
tonality of the original image.

What we don’t want to happen in an image is
for a single pixel to generate two or more halftone
dots in the the final halftone. When this happens,
you get jagged edges on diagonal lines – what
computer scientists call jaggies in the image. These
are pixels that don’t replicate the tones in the
original image accurately.

Many theories exist on the issue of scanning,
and most of them work. Whether you abide by the
conventional wisdom of two pixels per halftone dot
(2:1) or a lower relationship (1.5:1 or 1.25:1 for
example), you will get a good image. Just

Resolving the halftone resolution issue:
how many dpi does it take to make an lpi?
by Brian P. Lawler

These images illustrate
the relationship between
halftone dots and the
pixels in the file that
created them.

We need to oversample
pixels for conventional
halftones – but to what
degree?

Conventional “wisdom”
dictates that the
oversampling ratio
should be 2:1. But many
have disproved this
theory, opting instead for
lower ratios – values of
1.25:1 or 1.5:1 – which
provide good scans that
print as excellent
halftones, and are usually
indistinguishable from
halftones printed from
higher resolution files.

This chart demonstrates how an 8.5 x 11 inch full-bleed image changes in size according to its
oversample ratio and halftone frequency. Curiously, the 8.85 MB and 4.98 MB files reproduce
the same. Which would you rather store? Which would you rather transfer across a network?
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remember that there is no absolute right or wrong
with regard to this process (despite what I say from
time to time).

Conventional halftone dots
When we use halftone patterns, the printed image
is creating a simulation of tonality. It’s really just an
optical illusion that there are varying tones of gray
or color on the printed page. In reality there is just
one solid color of ink. To create the illusion of
tonality, halftone dots are rendered with varying
areas. Small black dots reproduce the light tones in

the original, while larger black dots reproduce the
mid-tone values in the original, and tiny white dots
reversed-out of black reproduce the shadows in the
original.

Our eyes and brain work together to average
the reflective values of halftone dots into perceived
tonality. We look at little dots of solid ink, and we
think we see tonal variation, thus halftone patterns
work. The process was invented by lithographer
Frederic Ives in 1878.

While most halftone patterns are based on
variations of round or elliptical dots, it’s not
necessary for halftone images to be made of dots at
all!

Stochastic tonal patterns
Recent developments in screening technique have
revived a system developed in the 1950s that uses
the same digital data to make dotless patterns for
the description of tonal information.

Called stochastic, or frequency-modulated
screening, the technique is to disperse the spot
components of the halftone pattern randomly to
create the illusion of tonality. If an imagesetter
makes a single halftone dot by drawing a cluster of
spots in a circular pattern, what would happen if
those same component spots were distributed
randomly around the same cell area of the halftone

dot – but not clustered together? Interestingly,
these stochastic techniques result in the same
image, but with no recognizable pattern of dots!

Nyquist’s Theorem
Harry Nyquist was an electrical engineer who
worked at Bell Labs in the 1920s. The theorem that
carries his name was a watershed for engineers
involved in signaling and signal-to-noise ratio
calculations. Prior to Nyquist’s work, there was no
mathematical standard for signal strength
calculations. Radio engineers would broadcast vast
amounts of energy to get a signal to the receiver
successfully. Nyquist’s research showed, though,
that only twice the noise value needed to be
broadcast to get a signal to a receiver successfully.
Any more than twice the noise value was wasted.

It was a great relief for broadcast engineers to
rely on Nyquist’s Theorem, saving much
uncertainty and energy in getting their signals from
Point-A to Point-B.

More is not always better
Many people, believing that if 2:1 yields a good
halftone (it does) believe that 3:1 or 4:1 will yield
even better halftones. Nyquist tell us that any more
than 2:1 is wasted; quality does not improve with
higher sampling. Beyond 2:1 is simply wasted
effort – time and money.

The concept of Nyquist’s Theorem is valid: we
need to sample four or fewer pixels per halftone dot
(a 2:1 linear ratio) in order to achieve success in
halftone reproduction. But how many fewer?

Experimentation will demonstrate that ratios
significantly lower than 2:1 work perfectly. I have
found that this is often content-driven; people
pictures reproduce nicely with lower ratios, while
highly detailed images of machinery, furniture or
fabrics sometimes require higher ratios.

Oversampling ratio tests
The best way to determine the best ratio of pixels

Tonal values a re represented by halftone dots a s a
percentage of printed area. The halftone dots on the right
represent 30 percent of the possible printed area on the page,
thus create the illusion of a 30 percent gray value.

Nyquist’s Theorem
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to halftone dots is to test the process with a series
of scans and print the results. Shown at the bottom
of page 2 is a chart of recommended scans. They
range from 1:1 to 2:1. Notice that each scan is
named with a letter that does not relate to the
image size. This is handy when evaluating the
images after printing. Prepare the test by scanning
a good image at various resolutions.

I promise that ratios higher than 2:1 are
wasteful of time and resources – Nyquist says so!

Remember also that apparent sharpness is a
factor in your resolution experiments. In the chart
at the bottom of page 2 are recommendations for
resolutions as well as unsharp masking amounts.
Lower sample rates usually require sharpening to
match the appearance of higher-ratio sampled
images. Let’s take a quick tangent to discuss
unsharp masking….

Unsharp masking concept
Unsharp masking gets its name from a masking
film that was used when color separations were
made on process cameras and precision enlargers.
The masking film was used to adjust the density of
individual colors to compensate for the variations
in density of the three color separation filters – red,
green and blue – used to make separations. When
masking films were used in contact exposures, the
edges of tones were enhanced by the slightly
unsharp emulsion of the masking film.
Lithographers learned to use these masking films
to modify the appearance of sharpness in the color
separations they made; the process became known
as unsharp masking.

Most drum scanners have an electronic
variation on the theme of unsharp masking. High-
end drum scanners feature four photo-multiplier
tubes that analyze the tonality of the original
image. Three of the PMT sensors see already-

A conventional halftone sampled at 120 pixels per inch A simulated stochastic halftone sampled at 75 pixels per inch

A conventional halftone sampled at 90 pixels per inch

A conventional halftone sampled at 75 pixels per inch



separated red, green and blue images of the
original (the same image is split by a prism and
filtered through color separation filters). The
fourth PMT sensor sees a monochromatic image,
filtered only by a neutral-density filter, but with a
larger aperture than the other three. The larger
aperture gives a microscopic “advance look” at

tonal changes in the image being scanned. These
tonal changes are monitored by an unsharp
masking logic circuit; when a tonal change of
appropriate value occurs, the circuit modifies the
other three signals to enhance the edge where the
tonal change takes place (see illustration, above).

Thus unsharp masking is a synthetic
enhancement of tonal edges to make those edges
darker – or lighter – than they would have been if
they had been left alone.

Almost every image intended for halftone
reproduction is made better by some unsharp
masking. The resulting images are visibly superior
to those not sharpened.

Unsharp Masking in practice
Unsharp masking requires understanding the three
variables in the Unsharp Mask control panel in
Adobe Photoshop. The first element in the control
is percentage. The range is 1 to 500 “percent”
(Photoshop’s settings are odd compared the rest of
the industry which uses a scale of 0-100), with
reasonable values between 1 and about 200
percent.

In general, larger files need more unsharp
masking. A five megabyte file will be sharpened
nicely in the 75 percent range, while a 25 megabyte
file will require about 125 percent for about the
same visual impact.

The second variable in Photoshop unsharp
masking is the Diameter, designated in pixels. A
value of 1 is usually adequate here as larger
numbers tend to draw outlines around things! As
files get larger, you can increase the Diameter

setting to get an effective unsharp masking edge.
The third variable is the Threshold value. This

setting determines how much tonal change must
take place for an unsharp masking event to take
place. With photos of delicate subjects, diffuse
facial detail and such, a number in the 3 to 4 range
is adequate. A zero value will sharpen every tonal

difference, which may be too heavy-handed. You
must be the judge of the degree of sharpening.

Now, back to the scanning test…
The method is to scan at a variety of oversample
ratios, then make halftone film from the images;
proof the results and evaluate them in a blind test
(where the resolution values are not known to the
judges). All should be made from a good
photograph, scanned on a capable scanner (you
can substitute a Kodak Photo CD, and job-out the
scanning in the process).

Choose a halftone frequency appropriate to
your printing process. For commercial offset
printing use 150 lpi; for newsprint, use 85 lpi.
Web-fed publications typically use 133 lpi or less.
If you are unsure of the correct halftone frequency,
ask your printer to give you the best value for their
process.

After completion, have a group of impartial
judges view the results, voting for the image that
seems to be the “best.” The results will likely
surprise you.

If you really want to push this issue, scan a
photograph of a person for one set of tests, and a
photograph of wicker furniture for the other.
You’ll then see the difference between the effects of
resolution on images with different amounts of
detail.

Time equals money
Time really is money in this business, as a minute
saved in a typical prepress cost center is usually
worth $1.00 or more (average is $1.15 per minute).
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An oscilloscope monitoring the neutral gray photomultiplier tube on a drum scanner sees tonality as a function of varying
voltages. When the voltage changes quickly, an edge is sensed.By adding a spike to the high and low points on the signal, the
scanner changes the density at that edge by drawing larger and smaller halftone dots. The technique is called Unsharp Masking.
The same technique takes place in programs like Adobe Photoshop by analysis of pixels and their neighbors. When tonal
differences are found, the edges are enhanced by a computer algorithm that darkens and lightens the pixels along the edges.

E L E C T R O N I C  E D I T I O N
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One advertising agency that ran this test found
that the savings was really worth the effort. Prior
to running the test, the firm was routinely
scanning images at 3:1, resulting in full-page, full-
bleed, four-color files of 79.7 megabytes!

After doing the test, and satisfying themselves
that lower resolutions yielded equal results, they
settled on a ratio of 1.5:1. These same ad files were
reduced to about 19.9 megabytes, a savings of 60
percent in every area of production – disk space,
network transfer time, and – most importantly,
imagesetter time.

If you could reduce your prepress storage,
network communications and imagesetting time
by 60 percent without a quality loss, wouldn’t you
do it?

If you translate this firm’s savings into into
productivity, this means that there is more disk
space, more time available on the network, and
more work completed in a shift. Translate the
savings into dollars, and you discover that for
every $100 spent on the old plan there is now $60
(more than half their money!) available for
increased salaries, new equipment, and expansion
– all better investments than digits needlessly
written to a hard disk!

Running the tests takes about one business
day. This may seem like a waste of time, but the
result is well worth the effort.

Resolution math
Where do we start when it comes to calculating
resolution sizes and scan ratios?

The math needed to calculate the resolution of
any file is really quite simple. It is a three-element
multiplication equation that yields a value for
resolution. I’ll present three variations here for
different situations:

1. You want to scan an image 
and need to know the resolution

2. You have an image already scanned and
need to know how large it can be in print

3. You have a space to fill, and need to know
how many pixels of data to scan or capture
to fill the space.

First, the calculation for scanning resolution:

Q x lpi x % = R

…where Q is the oversample ratio you have
chosen from your test, used as a multiplier; lpi is
the halftone frequency expressed in lines-per-inch,
and % is the percentage of enlargement or
reduction expressed as a decimal number. R is the
resulting resolution. Following is an example of
this formula at work. Use a pocket calculator to
make the calculations:

A 5 x 7 reflective photo needs to be enlarged to
9 inches vertical (7 inches to 9 inches). We begin

by calculating the enlargement by dividing what
we want by what we have: 9/7 or 128% – which
when expressed as a decimal number is 1.28.

The oversample value – Q – we will choose for
this example is 1.5, that being a reasonable value
that neither pushes the limits of quality, nor clogs
the system with digital cholesterol. Our halftone
frequency is 150 lpi.

Armed with these three variables, we can now
complete our resolution calculation:

1.5 x 150 x 1.28 = 288

The Associative Law applies here, so you can
multiply these numbers in any order and still get
the same result: 288. Use this value to set the
resolution of the scanner (some scanner control
panels allow you to set the percentage with a
software control; for this formula to work, you
must leave this setting at 100%).

Fixed-resolution calculations
With fixed-resolution images, the equation has the
same elements, but the math is twisted around to
accommodate the fact that we have no control over
the scanner – the file has already been scanned.

Fixed-resolution images are those from CD-
ROMs, files supplied by clients and service
bureaus, stock photos, Internet-source images, and
Kodak Photo CD images (where you get your
choice of five or six fixed resolutions).

We have an image; we
need to know how large

that image can be in
print. The formula
for fixed-
resolution images
is:

D__________
(Q x lpi)

where D (in pixels)
is the dimension you

are calculating (I usually
check the longest dimension

first), Q is the oversample value, and lpi is the
screen frequency in lines-per-inch. Following is an
example:

We plan to use a Photo CD image, at Base✳16
(Kodak jargon for an 18 megabyte file in RGB). We
are planning to reproduce this image in a full-page
broadsheet newsprint ad (13.5 x 22 inches) in the
local daily paper. The newspaper uses a screen
frequency of 100 lpi.

The Photo CD image has a resolution of 2048
x 3072 pixels (I looked this up). We will probably
need to crop the image after we open it, so we’ll see
if this image is large enough. We’ll use a Q value of
1.25 here (as low as I ever go with conventional
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halftones). Here’s the math:
1950__________

(1.25 x 100)
Mathematics rules tell us that we must execute the
part in parentheses first, so we multiply the Q by
the lpi (1.25 x 100) first, then perform the division.
so we end up with:

1950__________
125

or 15.6 inches (horizontal). This is the maximum
dimension to which I can enlarge this image under
these circumstances. When I test the other
dimension (2048 pixels) I get a reproduction size
of 22.9 inches, just enough to fill that broadsheet
page with some room for cropping.

BUT YOU CAN’T DO THAT!!!
A person attending one of my seminars exclaimed
one day that Photo CD images just can’t be
enlarged that much (and some early Kodak
literature says this emphatically) – but it’s simply
not true. Digital images are elastic; their ultimate
size depends on the variables described here:
screen frequency, Q value, and number of pixels,
and of course viewing distance is an important
variable. If you have these facts, you can calculate
the usefulness of any fixed-resolution image for
any task – be it a postcard or a billboard.

When you have a space, 
but need to know the number of pixels
If you have a space in a page layout, and need to
calculate how much of a digital file you need to fill
the space, the formula is:

Q x lpi x inches = pixels

The product of this equation is the number of
pixels needed to fill the space. Let’s see an example:

We have designed a full-page ad, and allowed a
space for a photo that is 9 inches tall by 3.25 inches
wide. We are printing by web-fed offset, at 133 lpi.
The Q value chosen is 1.41† and we will multiply
them all together to get the number of pixels we
need in the image.

1.41 x 133 x 9 = 1687.7
You can’t have a partial pixel, so it’s best to seek
1688 pixels (or 1700 to be more cavalier!). Say
we’re using the Kodak Photo CD, and we have a
choice of its 5 basic resolutions (pixels x pixels):
We’re looking for an image with at least 1700
pixels in the vertical dimension to fill the 9-inch
space. The Base✳4 image in this chart falls just
short of the adequate resolution, and the Base✳16
is really too large. Which do we choose?

It’s unwise to choose the lower, as this pushes
us below our selected Q value. Choosing the larger
image will result in a printed halftone that is

excellent. But, it has too much resolution, so we
may want to reduce its resolution using
Photoshop’s Image Size controls, which will cause
the photo to be reduced in actual size through a
process called subsampling. The resulting file will
be just right for its designated purpose.

■ This is one of a series of essays on the use of
computers in the graphic arts. Others are available
on a variety of subjects from black and white
scanning to managing color images for the World
Wide Web. You are welcome to download the
others from my FTP site, and reproduce them for
your associates and clients. You may not charge for
them, nor change the content in any way.

Brian P. Lawler
Graphic Arts Consultant
6045 Madbury Court
San Luis Obispo, California 93401 USA
Telephone: 805 544-8814
Fax: 805 544-8445

http://www.callamer.com/bplawler

†1.41 is the hypotenuse (diagonal) of a square. Several
industry experts have proffered this value as a valid Q
number because it is the diagonal of a potential halftone
cell. The value works fine, but that’s a coincidence.
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